

Document No.	IE-SP-179
Released Date	2021/08/31
Page No.	1

1 Scope:

- 1.1 This specification is applicable to lead free and halogen free of ROHS directive for RST series low-resistance thick film chip resistors.
- 1.2 Superior Sulfur resistant capability (Refer to ASTM-B-809-95&EIA977sulfur vapor test).
- 1.3 The product is for general electronic purpose.

2 Explanation Of Part Number:

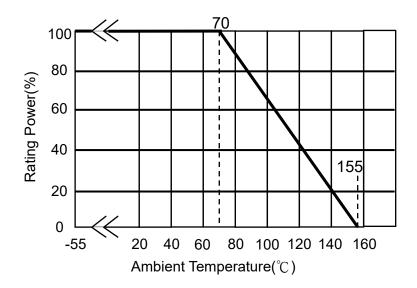
	IE		QA	備註						發行管制章DATA Center.
制訂	審查、	核准	會簽	非	發行	管	制	文	件	数 打 声 即 手 D バ バ O O I I Co I .
朱翠平	上腔伟	5 14	HBAY	自	行 注	意 版	[本	更	新	a 60
, -1 1			TRADA	非經	5允許,	禁止自	1 行景	5印3	文件	Series No. 60

Document No.	IE-SP-179
Released Date	2021/08/31
Page No.	2

3 General Specifications:

Type	Rated Power at 70℃	Max. Working Voltage	Max. Overload Voltage	T.C.R (ppm/°C)	Resistance Range F(±1%) \ J(±5%) E-24 \ E-96
				±1500	$30\text{m}\Omega \leq R < 37\text{m}\Omega$
				±1200	$37\text{m}\Omega\!\leq\!R\!<\!60\text{m}\Omega$
RST (0402)	1 16	1.44A	3.60A	±600	$60\text{m}\Omega\!\leq\!R\!<\!100\text{m}\Omega$
(0402)	10			±500	$100 \text{m}\Omega \leq R < 400 \text{m}\Omega$
				±300	$400 \text{m}\Omega \leq R < 1000 \text{m}\Omega$
				±1500	$30\text{m}\Omega\!\leq\!R\!<\!37\text{m}\Omega$
RST	1 ,,,	4.004	4.504	±1200	$37\text{m}\Omega \leq R < 60\text{m}\Omega$
(0603)	10W	1.82A	4.56A	±600	$60\text{m}\Omega\!\leq\!R\!<\!100\text{m}\Omega$
				±200	$100 \text{m}\Omega \leq R < 1000 \text{m}\Omega$
				±1200	$20m\Omega \le R < 33m\Omega$
RST	1 ,,,	0.504	0.054	±800	$33\text{m}\Omega \leq R < 50\text{m}\Omega$
(0805)	- <u>1</u> -W	2.50A	6.25A	±600	$50\text{m}\Omega\!\leq\!R\!<\!100\text{m}\Omega$
				±300	$100 \text{m}\Omega \leq R < 1000 \text{m}\Omega$
	1 3 W	4.08A		±1200	$20m\Omega \le R < 25m\Omega$
RST			40.004	±1000	$25m\Omega \leq R < 50m\Omega$
(1206)			10.20A	±600	$50\text{m}\Omega\!\leq\!R\!<\!100\text{m}\Omega$
				±300	$100 \text{m}\Omega \leq R < 1000 \text{m}\Omega$
				±1000	20mΩ≤R< 25 mΩ
RST	1 ,,,	E 00A	40.504	±700	$25\text{m}\Omega \leq R < 50\text{m}\Omega$
(1210)	- <u>1</u> -W	5.00A	12.50A	±400	$50 \text{m}\Omega \leq R < 100 \text{m}\Omega$
				±300	$100 \text{m}\Omega \leq R < 1000 \text{m}\Omega$
				±1200	$20m\Omega \le R < 25m\Omega$
RST	<u>3</u> W	6 10 1	15 21 4	±900	$25m\Omega \le R < 50m\Omega$
(2010)	4 vv	6.12A	15.31A	±500	$50 \text{m}\Omega \leq R < 100 \text{m}\Omega$
				±300	$100m\Omega\!\leqq\!R\!<\!1000m\Omega$
				±1200	$20m\Omega \le R < 25m\Omega$
RST	1W	7.07A	17.674	±900	$25m\Omega \le R < 50m\Omega$
(2512)	1 V V		17.67A	±500	$50m\Omega \le R < 100m\Omega$
				±300	$100m\Omega\!\leq\!R\!<\!1000m\Omega$
Ol	perating Tem	perature Rar	nge		-55°C ~ +155°C

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Keiliaik		Series No. 60
	Do not copy without permission	Series No. OO



Document No.	IE-SP-179
Released Date	2021/08/31
Page No.	3

3.1 Power Derating Curve:

Temperature Range: -55° C ~ $+155^{\circ}$ C

If the ambient temperature exceeds 70 degrees centigrade to 155 degrees centigrade, the power can be modified by the curve as below.

3.2 Current Rating:

Rated Current: DC current or AC current (rms) based on the rated power.

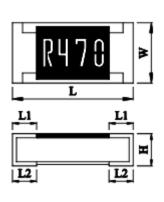
The current can be calculated by the following formula. If the calculated value exceeds the Max. current specified in the Table 3, the Max. current rating is set as the current rating.

$$I = \sqrt{P/R}$$

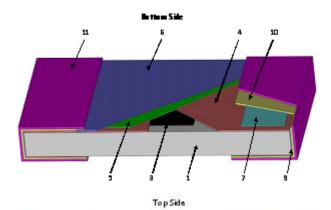
I= Rated current (A)

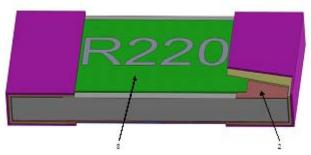
P= Power rating (W)

R= Nominal resistance(Ω)


	ITS NOT UNDER CONTROL FOR PDF FILE	Issue Dep. DATA Center.
Remark	PLS NOTE THE VERSION STATED	
	Do not copy without permission	Series No. 60

Document No.	IE-SP-179
Released Date	2021/08/31
Page No.	4


4 Dimensions:


Unit:mm

T	Dimension	L	W	Н	L1	L2
Туре	Size Code					
RST	0402	1.00±0.10	0.50±0.05	0.30±0.10	0.25±0.10	0.20±0.15
RST	0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.35±0.15
RST	0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
RST	1206	3.05±0.10	1.55±0.10	0.50±0.10	0.45±0.20	0.55±0.25
RST	1210	3.05±0.10	2.55±0.10	0.55±0.10	0.50±0.20	0.50±0.20
RST	2010	5.00±0.20	2.50±0.20	0.60±0.10	0.65±0.20	0.65±0.20
RST	2512	6.30±0.20	3.20±0.20	0.60±0.10	0.65±0.20	0.65±0.20

5 Structure Graph:

1	Ceramic substrate	7	2nd Bottom inner electrode
2	Top inner electrode	8	G2 layer+Marking
3	Resistive layer	9	Terminal inner electrode
4	1 st Bottom inner electrode	10	Ni plating
5	1st Protective coating	11	Sn plating
6	2nd Protective coating		

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.	
Kemark	Do not copy without permission	Series No. 60	

Document No.	IE-SP-179
Released Date	2021/08/31
Page No.	5

6 Reliability Test:

Reliability T	est:	
Item	Conditions	Specifications
	Put the specimens in the chamber with temperature of	Resistors △R%=±2.0%
High Temperature Exposure (Storage)	155±3℃ for 1000 hours. Then take them out to stabilize in room temperature for 24±4hr or more, and measure of its resistance variance rate.	
(Storage)	Experiment evidence: AEC-Q200	
	Put the specimens in the High & low temperature test	△R%=±2.0%
Temperature Cycling	chamber with temperature varies from -55°C to 125°C for 15 minutes and total 1000 cycles. Then take them out to stabilize in room temperature for 24±4hr or more, and measure of its resistance variance rate.	
	Experiment evidence: AEC-Q200	
	Applied 2.5 times rated current for 5 seconds and	△R%=±2.0%
Short Time Overload	release the load for about 30 minutes, then measure its resistance variance rate. (Rated current refers to item 3. general specifications)	
	Refer to JIS-C5201-1 4.13	
		△R%=±3.0%
Biased Humidity	the constant temperature humidity chamber with 85±2°C and 85±5%RH. Then apply the test current that calculates based on the 10% of rated power for 1000hrs. Then take them out to stabilize in room temperature for 24±4hr or more, and measure of its resistance variance rate.	
	Experiment evidence: AEC-Q200	
	Solder the specimens on the test PCB and Put them in	△R%=±3.0%
Operational Life	the chamber with temperature of 125±3°C and load the current for 1000 hours. Then take them out to stabilize in room temperature for 24±4hr or more, and measure of its resistance variance rate. Note: The input current shall refer to the power de-rating curve (referring to page 2,No.3.1)	
	Experiment evidence: AEC-Q200	
	Solder the specimens on the test PCB and put the PCBA	
Board Flex		No mechanical damage, peel-off of side end or chip crack.
(Bending Test)	D:	
	0402 \ 0603 \ 0805=5mm 1206 \ 1210=3mm	
	2010 \ 2512=2mm	
	Experiment evidence: AEC-Q200	

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60

Document No. IE-SP-179 Released Date 2021/08/31 Page No. 6

			Specifica	ations
Item		Conditions	Resist	
Resistance to Soldering Heat	solder pot, the more and ma Temp of sold Soldering du	ens are fully immersed into the Pb-free nen take them out to stabilize for 1 hour or easure of its resistance variance rate. der pot: 260±5°C tration: 10±1sec. evidence AEC-Q200	△R%=±2.0%	
ESD	Put the spect (2) discharge one (1) with negative pol 30min or morate. The test regular discharge on the spear	imens on the test fixture and two is (2KVDC) shall be applied to each PUT, a positive polarity and one (1) with a arity. Afterwards, the specimens stabilize for one and measure of its resistance variance is is performed with direct contact and in arge mode. The resistor and capacitor used thead is 2000Ω and 150pF respectively.	△R%=±3.0%	
Solderability	Precondition The specime 4hrs±15min. The specime immersed in 235± 5°C fo observe the Test item 2 The specime immersed in 260±5°C for observe the	(solder pot test): Method B :: ens are subjected to 155°C dry bake for	1.Soldering coverage 2.At the edge of termi underneath (e.g. wh not expose.	nal, the object
Electrical Characterization	TCR (ppm/°C) = $\frac{(R2-R1)}{R1(T2-T1)} \times 10^6$ R1: Resistance at room temperature (Ω) R2: Resistance at -55°C or +125°C(Ω) T1: Room temperature (°C) T2: Temperature -55°C or +125°C		Refer to item 3. Gene	ral specifications
Sulfuration Test	Class : A	Put the tested resistor in sulfur vapor, at a temperature of 60±2℃ for 1000hrs Refer to ASTM-B-809-95&EIA977	△R=±4.0%	Refer to item 3. general specifications

	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

Document No.	IE-SP-179	
Released Date	2021/08/31	
Page No.	7	

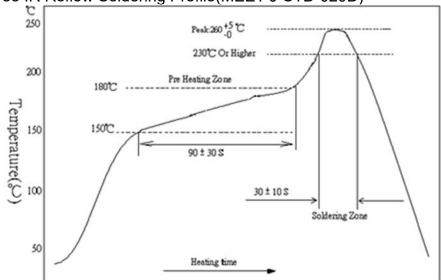
7 Measurement Point:

Measure from bottom electrodes			Unit : mm
Α	DIM TYPE	А	В
	RST0402	0.80±0.05	0.24±0.05
	RST0603	1.35±0.05	0.35±0.05
	RST0805	1.80±0.05	0.35±0.05
	RST1206	2.90±0.05	0.35±0.05
Current Terminal	RST1210	2.90±0.05	0.35±0.05
Voltage Terminal	RST2010	4.50±0.05	1.15±0.05
	RST2512	5.90±0.05	1.60±0.05

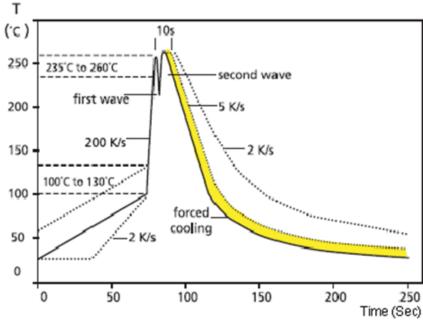
8 Plating Thickness:

- 8.1 Ni: \ge 2 μ m
- 8.2 Sn(Tin): \ge 3 μ m
- 8.3 Sn(Tin):Matte Sn

9 Rule of package empty quantity:


9.1 Empty quantity for each reel is not allowed to exceed 0.1% of the whole quantity, and continuous 2pcs (included) empty are also unallowed.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60


Document No.	IE-SP-179	
Released Date	2021/08/31	
Page No.	8	

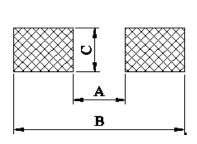
- 10 Technical application notes: (This is for recommendation, please customer perform adjustment according to actual application)
 - 10.1 Recommend Soldering Method:
 - 10.1.1Lead Free IR Reflow Soldering Profile(MEET J-STD-020D)

Remark: Remark: The peak temperature of soldering heat is 260 +5/-0 $^{\circ}$ C for 10 seconds.

10.1.2Lead Free Double-Wave Soldering Profile. (This applies to 0603 and above size products)

10.1.3Soldering Iron: temperature 350° C ± 10° C, dwell time shall be less than 3 sec.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60



Document No.	IE-SP-179	
Released Date	2021/08/31	
Page No.	9	

Unit[·]mm

10.2 Recommend Land Pattern Design (For Reflow Soldering)

When a component is soldered, the resistance after soldering changes slightly depending on the size of the soldering area and the amount of soldering. When designing a circuit, it is necessary to consider the effect of a decrease or increase in its resistance.

Officiality				
TYPE	Α	В	O	
RST0402	0.5	1.5	0.6	
RST0603	0.8	2.1	0.9	
RST0805	1.2	3.0	1.3	
RST1206	2.2	4.2	1.6	
RST1210	2.2	4.2	2.8	
RST2010	3.5	6.1	2.8	
RST2512	3.8	8.0	3.5	

10.3 Environment Precautions:

This specification product is for general electronic use, RALEC will not be responsible for any damage, cost or loss caused by using this specification product in any special environment. If other applications need to confirm with RALEC.

If consumer intends to use our Company product in special environment or condition (including but not limited to those mentioned below), then will need to make individual recognition of product features and reliability accordingly.

- (a) Used in high temperature and humidity environment;
- (b) Exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2;
- (c) Used in non-verified liquids including water, oil, chemical and organic solvents;
- (d) Using non-verified resin or other coating material to seal or coat our Company product;
- (e) After soldering, it is necessary to use water-soluble detergents to clean residual solder
- (f) fluxes, even though no-clean fluxes are recommended.

10.4 Momentary Overload Precautions:

The product might be out of function when momentary overloaded. Please make sure to avoid momentary overloading while using and preserving.

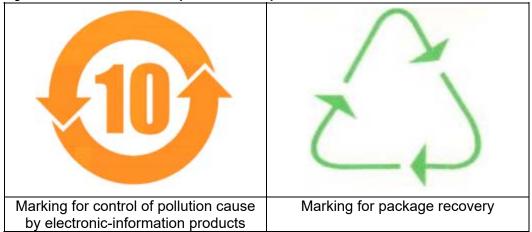
Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60

Document No.	IE-SP-179
Released Date	2021/08/31
Page No.	10

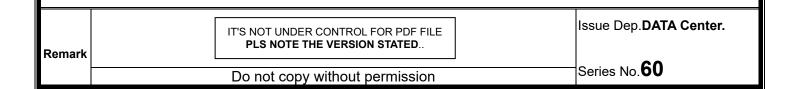
10.5 Operation and Processing Precautions:

- (a) Avoid damage to the edge of resistor and protective layer caused by mechanical stress.
- (b) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (c) Make sure the power rating is under the limit when using the resistor. When power rating is over the limit, the resister will be overloaded. There might be machinery damage due to the climbing temperature
- (d) If the resister will be exposed under massive impact load (shock wave) in a short period of time, the working environment must be set up well before use.
- (e) Please make evaluation and confirmation when the product is well used in your company and have a through consideration of its fail-safe design to ensure the system safety.

11 Storage and transportation requirement:


- 11.1 The temperature condition must be controlled as 25±5℃, and the R.H. must be controlled as 60±15%. The stock can maintain quality level in two years.
- 11.2 Please avoid the mentioned harsh environment below when storing to ensure product performance and its' weldability. Places exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2.
- 11.3 When the product is moved and stored, please ensure the correct orientation of the box. Do not drop or squeeze the box. Otherwise, the electrode or the body of the product may be damaged.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60


Document No.	IE-SP-179	
Released Date	2021/08/31	
Page No.	11	

12 The carton packaged for electronic-information products is made by the symbol as follows: (For China)

13 Attachments:

13.1 Document Revise Record (QA-QR-027)

Document No.	IE-SP-179	
Released Date	2021/08/31	
Page No.	12	

Legal disclaimer

RALEC, its distributors and agents (collectively, "RALEC"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. RALEC may make changes, modifications and/or improvements to product related information at any time and without notice.

RALEC makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, RALEC disclaims (i) any and all liability arising out of the application or use of any RALEC product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

RALEC defined this product is for general electrical use, not design for any application for automotive electrical, life-saving or life support equipment, or any application which may inflict casualties if RALEC product failure occurred. When consumer is using or selling products of RALEC without having discussion with the sales representatives and specifically stated the applicability mentioned above in a written form, then the client need to take a full responsibility and agree to protect RALEC from punishment and damage.

Information provided here is intended to indicate product specifications only. RALEC reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by ECN.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60